반응형

268600, ASOS, Cell-Penetrating Peptides, cellivery, CPPs, MTD, MTDs, TSDT, tyrosine hydroxylase, 셀리버리

 

OVERVIEW

MISSION

Cellivery is a biotech company developing innovativedrug candidates with cell-/tissue-permeability based onCellivery’s proprietary Therapeuticmolecule Systemic DeliveryTechnology (TSDT) Platform.

BUSINESSMODEL

TSDT provides a powerful method to identify and validate potentialtherapeutic targets. Thus, Cellivery is developing TSDT applied cargossuch as small molecules, antibody, and peptides to target rare diseases.

 

Cellivery’s therapeutic drug candidates are being developedfor the prevention and treatment of life-threatening diseases,including cancer, inflammation, obesity, metabolic diseases, andneurodegenerative diseases.

COMPETITIVENESS

The mission of Cellivery is to commercialize this unique and life-saving therapeutics to contribute to our society in aiding patientswith hard-to-cure diseases.

MARKETS

Cellivery’s strategy is to collaborate with pharmaceutical andservice companies globally. By collaborating, Cellivery can strengthenand further develop drug candidates and expedite the process ofcommercialization and marketing in order to help patients quicklyand more effectively.

Cellivery is currently collaborating with global pharmaceuticalcompanies to discover new drug candidates and working with globalCMOs and CROs.

 

GREETING

Founder&CEO
Daewoong Jo,Ph.D.

Dear Sir/Madam,..

Please allow me to introduce Cellivery Therapeutics, Incorporated (referred to as the “Company” or “Cellivery” henceforth). The mission of Cellivery is to become a leading protein-based drug discovery company within the biotechnology industry, developing therapeutics capable of entering cells through proprietary Therapeuticmolecule Systemic Delivery Technology (TSDT). A well-rounded management team and active advisory board members are uniquely suited, through technical and industry experiences, to fulfill the Company’s mission to commercialize life-saving therapeutics and cultivate revenue-generating partnerships with companies in biotechnology and pharmaceuticals.

The plasma membrane normally acts as an impermeable barrier, preventing proteins and other macromolecules from entering cells. However, Cellivery’s proprietary TSDT allows functionally active macromolecules to rapidly traverse cellular membranes. The process utilizes specialized hydrophobic cell-penetrating peptides (CPPs), termed Macromolecule Transduction Domains (MTDs) that can be engineered into peptides, whole proteins, DNA fragments, and other bioactive substances such as drugs. With additional subcellular trafficking signals, transduced macromolecules can be guided to specific cellular locations, providing an effective way to influence intracellular protein function.

Previously, recombinant cell-permeable (CP-) proteins fused to MTDs to deliver therapeutically active cargo proteins into live cells were developed, but due to their low solubility and yield, the fusion proteins expressed in bacterial system were difficult to purify in soluble form. To address the crucial weakness for further clinical development of the CP-Proteins as protein-based biotherapeutics, tremendously enhanced form of the hydrophobic CPP, named advanced MTD (aMTD), was developed through critical factor-based peptide analysis. In Cellivery, we have demonstrated that TSDT enabled by the novel aMTDs could provide novel protein therapies against cancer and other lethal diseases.

The valuation of the company, as with most companies in this market, will be based on the value of its intellectual property, ongoing partnerships, and pipelines, rather than on current revenues. The scientific expertise and core competencies of the company will allow Cellivery to become the world’s foremost biotechnology company devoted to the creation and use of cell-permeable protein therapeutics.

TSDT is a platform technology with many applications in biomedical research fields. In particular, TSDT provides a method to identify and validate potential therapeutic targets, and to deliver protein-based drugs into live cells and animals. To maximize the value of the company’s intellectual property, the company will out-license specific technologies.

Cellivery will also use its core transduction technology to build novel protein-based drug discovery platforms that rapidly identify functional protein interactions. These platform developmental expenses will be defrayed, in some cases, by establishing long-term corporate research and development alliances. Such alliances will generate near-term recurring revenue for the company.

Cellivery’s therapeutic drug candidates are being developed for the prevention of life-threatening lethal diseases, including various cancer. The company’s subsequent drug discovery programs will focus on other diseases, in which the transient suppression of either symptoms or etiology would produce long-term benefits, that are both cost-effective and associated with a high quality of life.

Cellivery's long-term goal is to continue to increase the value of shareholders by building revenue-generating partnerships, establishing a strong intellectual properties and drug portfolios, and creating proprietary biological information. Our goal is to have an initial public offering after the development phase or within 3 years, depending on markets.

In conclusion, I believe TSDT has considerable promise and Cellivery will be able to enhance and extend TSDT and move the technology from conceptual to therapeutic reality.

I hope my comments have been useful to you in understanding the company’s goals and values.

Sincerely,

Daewoong Jo, Ph.D.

Founder & CEO
Cellivery Therapeutics, Inc.
Seoul, Republic of Korea

 

 

Pipeline

CV-01

PIPELINE | CV-01
TSDT Platform

Advanced Macromolecule Transduction Domain (aMTD)-enabled Therapeuticmolecule Systemic Delivery Technology (TSDT), a powerful platform technology for the discovery and development of the new medicinal drug, is enabled with hydrophobic cell-penetrating peptides (CPPs) that provide cell-permeability of therapeuticmolecules in-vivo.

Previous generations of hydrophobic CPPs were derived from the hydrophobic signal peptides of secreted proteins and used to deliver biologically active peptides and proteins systemically in animals. However, many efforts to develop cell-permeable therapeutic proteins by using previous generations of hydrophobic CPP sequences for further clinical development and applications have been hampered by poor solubility of the recombinant proteins in physiological buffer condition and relatively low cell-permeability. To develop improved hydrophobic CPPs, Cellivery analyzed sequences from all 1st and 2nd generation hydrophobic CPP sequences and identified 6 ‘critical factors’ associated with efficient protein translocation across the plasma membrane. 136 synthetic peptides were developed that incorporated different permutations of the 6 CFs and have been designated advanced macromolecule transduction domains

Compared to the previous generations of CPPs, proteins containing aMTDs displayedan average of 13±1.1-folds greater cell-penetrating ability.

aMTD-mediated therapeuticmolecule uptake involves direct penetration of the plasma membrane. In particular, uptake did not require ATP, cell surface proteins or microtubule function. The uptake, however, was abolished in the presence of calcium chelator and also blocked in temperature at 4°Csuggesting the requirements of aMTD-mediated uptake aremembrane integrity and fluidity.

Finally, aMTD-enabled TSDT platform is able to internalize the therapeutic moleculeinto cellsand tissues systemically via cell-to-cell delivery.

However, because macromoleculeshave high target specificity with the binding partner, it makes mechanism specific-targeted therapy possible. In general, having entered the cell, CP-Proteins spread everywhere in a similar way as small molecule drugs. However, unlike small molecule drugs, aMTD/SD-fused recombinant protein does not function without binding to its correct target because CP-Proteins possess the ability of interact with its targets specifically. In this case, affinity plays a role of target receptor in the distribution of cells. Moreover, affinity controls the selectivity and defines the specificity. Ultimately, CP-Proteins will produce fewer off-target effects than small molecule drugs by virtue of their grater specificity.

aMTD-enabled TSDT platform can be applied to many moieties of therapeuticmolecules across different disease areas. Therapeutic moleculeswith proven biological activities can easily be developed into cell-permeable medicinal candidate by simplyfusing aMTD empirically. TSDT enabled by aMTD can efficiently and cost-effectively be used as platform technology for discovery/development of protein-based biotherapeutics.

 

CV-02

PIPELINE | CV-02
iCP-SOCS3

Suppressor of cytokine signaling 3 (SOCS3) functions as a negative-feedback regulator of JAK/STAT signaling that suppresses JAK kinase activity and promotes degradation of the activated cytokine receptor complex resulting in the anti-inflammatory and anti-cancer effect due to suppression of inflammation-inducing cytokine signaling. Loss of SOCS3 enhances the growth and survival of some solid tumors; therefore, methods to replenish intracellular levels of the protein may provide an effective therapy against solid tumors dependent on JAK/STAT signaling for growth or survival.

To control the JAK/STAT signaling negatively, we previously developed cell-permeable SOCS3 recombinant protein (CP-SOCS3) enabled by a previous generation of hydrophobic CPP (membrane-translocating motif: MTM) derived from FGF4 in order to explore the possibility of blocking cytokine-induced signaling pathway (Nat Med. 2005;11:892-898). However, these previously developed recombinant CP-SOCS3 proteins showed extremely low solubility, yield, and relative low cell- and tissue-permeability. To overcome these limitations, we have newly developed recombinant SOCS3 proteins fused to novel hydrophobic CPP, advanced macromolecule transduction domain (aMTD), to greatly increase their solubility, manufacturing yield, and efficiency of membrane penetrating ability named as improved cell-permeable (iCP)-SOCS3 proteins.

iCP-SOCS3 has the therapeutic applicability to treat various cancers includinghepatoma, pancreatic cancer, lung cancer, colorectal cancer, gastric cancer and glioblastoma,and inflammatory disorders through protein-based intracellular replacement therapy.

iCP-SOCS3 suppressed cancer-associated phenotypes, induced apoptosis and triggered alteration in biomarker expression (e.g., cell cycle, apoptosis, angiogenesis) consistent withpreviously described effects of SOCS3. In contrast, iCP-SOCS3 did not affect proliferation and apoptosis of non-cancerous cells. In addition, iCP-SOCS3 also significantly suppressed the tumor growth in various cancer cell-derived xenograft (CDX) models and significantly inhibited tumor angiogenesis in vivo, leading to inhibition of tumor angiogenesis. Furthermore, iCP-SOCS3 inhibited STAT3 phosphorylation and reduced secretion of proinflammatory cytokines leading to attenuated progression of inflammatory bowel disease (IBD) and acute liver injury.

iCP-SOCS3 suppressed cancer-associated phenotypes, induced apoptosis and triggered alteration in biomarker expression (e.g., cell cycle, apoptosis, angiogenesis) consistent with previously described effects of SOCS3. In contrast, iCP-SOCS3 did not affect proliferation and apoptosis of non-cancerous cells. In addition, iCP-SOCS3 also significantly suppressed the tumor growth in various cancer cell-derived xenograft (CDX) models and significantly inhibited tumor angiogenesis in vivo, leading to inhibition of tumor angiogenesis. Furthermore, iCP-SOCS3 inhibited STAT3 phosphorylation and reduced secretion of proinflammatory cytokines leading to attenuated progression of inflammatory bowel disease (IBD) and acute liver injury.

 

CV-06

PIPELINE | CV-06
iCP-Parkin

A BBB-Crossing Protein Savior For Damaged Neurons

Parkinson’s disease (PD) isa neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons, leading to clinical symptoms such as exercise relaxation, tremor, and postural instability. The pathological hallmark of PD is the abnormal accumulation of α-synuclein, resulting in the formation of Lewy body in the dopaminergic neurons. These striking clinical features have focused efforts to understand the mechanisms responsible for neuronal death and reasons why dopaminergic neurons are differentially affected. In these neurogenerative microenvironment, Parkin protein, which functions as an E3 ubiquitin ligase, appears to rescue dying neurons from toxic and abnormal accumulations of cellular components despite the complexity of PD etiology.

iCP-Parkin as a superior disease-modifying anti-PD agent

An improved cell-permeable Parkin (iCP-Parkin) is our first-in-class Parkinson’s Disease (PD) drug candidate, which can penetrate the Blood Brain Barrier (BBB) and recover the damaged dopaminergic (DA) neurons. It is a Therapeuticmolecule Systemic Delivery Technology (TSDT) applied Cell-/Tissue-permeable Parkin recombinant protein. Like endogenous Parkin, iCP-Parkin can have cytoprotective action by recovering dysfunctional mitochondria through mitophagy and mitochondrial biogenesis. iCP-Parkin can reduce the accumulation of pathological α-Synuclein, thereby suppressing PD phenotypes. Currently, typical PD treatment such as L-Dopa employs symptom-relieving drugs replenishing the loss of Dopamine in brain, temporarily recovering patient’s abnormal motor function. Although the symptom maybe eased, it is not addressing

Therefore, the disease will get worse as time passes and side effects will be occurred.In contrast, iCP-Parkin has neuroprotection capability against PD-induced cellular stress,having a great potential as a disease-modifying therapy for PD biotherapeutics.

In AAV-α-Synuclein-induced PD mouse models, conducted in Severance Hospital and Cellivery, the behavior deficit was recovered with the treatment of iCP-Parkin, and the accumulation of pathological α-Synuclein was removed in the SN, with the recovery of tyrosine hydroxylase (TH) level.

Currently, in collaboration with Ildong Pharmaceutical CO., LTD, we are conducting preclinical R&D of iCP-Parkin at various global GROs and CMOs to move forward more rapidly to clinical development process.Also, Cellivery as a first-time grant recipient in South Korea, established iCP-Parkin research in support of Michael J. Fox Foundation (MJFF) for Parkinson’s Research (MJFF Program: No.14241. 2017. 07 ~ 2019. 03).

 

CV-07

PIPELINE | CV-07
CP-BMP2

No Carrier! Only Simple Injection For Bone Regeneration!

Bone is the only organ that dynamically undergoes continuous tissue remodeling throughout life and is one of the few organs that retains regenerative potential on adult life. Severe damages in bone tissue require local supply of osteogenic growth factors of TGF-β family including bone morphogenetic proteins (BMPs) during regenerative process. Mainly, BMP2 plays an important role in skeletal development and bone formation. Clinical trials with recombinant human (rh) BMP2 protein-based approaches have been applied to promote the healing of severe fractures (e.g., long-bone non-union, tibial fracture implant) and spinal fusion. However, there are a few drawbacks with the use of rhBMP2. Due to short retention time and low tissue integration in a body, ? use of rhBMP2 is expensive with multiple or high-dose of treatment. In addition, rhBMP2 protein-based approaches have numerous side-effects (e.g., ectopic bone formation) at pharmacological dosage and sometimes requires surgical procedure, because it does not have an effective delivery method.

Cell-permeable BMP2 (CP-BMP2), our TSDT-applied rhBMP2, can be rapidly delivered into neighboring cells and tissues near the injured site by local injection, without a carrier/scaffold or any surgical procedure, and reside in the damaged bone tissue for a longer period, addressing rapid degradation and clearance rate issues that exist with rhBMP2. CP-BMP2 significantly activated Smad osteogenic signaling and induced ALP strongly. In addition, CP-BMP2 showed great persistency and enhanced stability in blood plasma. We also found that CP-BMP significantly promoted bone-regeneration (8 folds higher) in murine calvaria critical-sized defect and equine hind limb defect models.

Utilizing bio-better therapeutics with TSDT, we are developing CP-BMP2 as a next-generation osteogenesis agent to enhance local bone healing in a cost-/patient-friendly way.

 

CV-08

PIPELINE | CV-08
CP-ΔSOCS3

The abnormal control of leptin, an adipocyte-secreted hormone controlling appetite, chronically causes morbid obesity as it accumulates excessive body fat.

On binding to leptin receptor (ObR) expressed in hypothalamic neurons, leptin evokes JAK/STAT signaling, and induces the expression of suppressor of cytokine signaling 3 (SOCS3) as a negative feedback regulator to maintain the homeostatic balance between food intake and fat accumulation. However, excessive leptin in obesity increases level of endogenous SOCS3 which promotes “leptin resistance” and disables the appetite-control by leptin. Due to this phenomenon, leptin-based therapeutic approach failed to effectively cure severely-obese patients, though it had previously been considered as an attractive anti-obesity strategy.

The goal of the project was to use advanced macromolecule transduction domain (aMTD) to deliver a competitive protein-based inhibitor to disrupt the binding of SOCS3 and ObR. Cell-permeable (CP) truncated SOCS3 recombinant protein (CP-ΔSOCS3) has been developed to overcome leptin resistance, and to investigate whether leptin-induced anti-appetite signals can be maintained for the treatment of severe obesity.

We observed that CP-ΔSOCS3 was efficiently delivered into cells and tissues includinghypothalamus by penetrating blood brain barrier (BBB), and directly interacted with ObR andenhanced leptin signaling in vitro and in vivo.

Diet-induced obese (DIO) mice treated with CP-ΔSOCS3 shows 26% of body weight decreased under the regular-fat diet (RFD) condition and 12% of body weight decreased under the high-fat diet (HFD) condition through regulating the expression of appetite regulatory marker and energy expenditure marker. In addition, CP-ΔSOCS3 improved fatty liver and reduced total cholesterol level of obese mouse. Furthermore, CP-ΔSOCS3 decreased the blood glucose level in DIO mice indicating that it may have therapeutic effect on type II diabetes. Therefore, we have successfully demonstrated the therapeutic applicability of CP-ΔSOCS3 fused to aMTD as a mechanism-specific anti-obesity agent to restore normal appetite as well as type II diabetes.

Currently, CP-ΔSOCS3 is in preclinical studies by performing process development, manufacturing, encapsulation and analytical method development at global CROs and CMOs.

 

CV-09

PIPELINE | CV-09
iCP-Cre

Genetically engineered mouse models are useful tools for studying gene functionsin vivo.The discovery of Cre recombinase from bacteriophage P1 to induce DNA sequence-specific recombination in mammalian cells has achieved big advances in mouse models.

Applications involving Cre recombination have included conditional mutagenesis, gene replacement and chromosome engineering in mice, and conditional gene expression. However, process of generating Cre-mediated genetically engineered mouse models is expensive and time consuming. Also, the use of site-specific recombination in genetic studies is often hampered by difficulties expressing the recombinase enzyme in specific-type of cells and the desired developmental stage. Moreover, even conditional mutants induced by tissue-specific Cre expression may interfere with tissue development, thus, precluding later studies in terminally differentiated cells.

To overcome the limitation, the delivery of proteins with cell-penetrating peptides (CPP) intocells across impermeable cell membranes has been proposed as an attractive strategy to dealwith genetically engineered mouse models to define gene functions. The directly introducedcell-permeable recombinant protein is likely to be much easier, quicker, and less cost than othermethods, such as using Cre mouse or viral delivery.

For this purpose, we havenewly invented improved cell-permeable (CP) Cre recombinant protein fused to novel hydrophobic CPP, aMTD, to greatly increase their solubility, yield, and efficiency of membrane penetrating ability. iCP-Cre recombinant proteins induced high levels of recombination in a variety of cultured cells and all tissues examined in various genetically engineered mice (ROSA26-LSL-LacZ, ROSA26-LSL-EYFP, ROSA26nT-nG, SOCS3f/f etc.) following intravenous (IV) or local administration for whole-body or organ-specific (brain, liver, kidney etc.) recombination in vivo.

The use of protein transduction using cell-permeable Cre recombinase for genome engineering in animalsprovides a rapid and efficient tools to define gene function in mouse models.

 

CV-10,11

PIPELINE | CV-10,11
iCP-RFs/Cas9

Terminally differentiated somatic cells can be reprogrammed to become induced pluripotent stem cells (iPSCs) by enforced expression of reprogramming factors (RFs) whichpromote self-renewal and render pluripotent cells leading to cellular differentiation. RFs contain 2 types of proteins, one for maintaining embryonic stem (ES) cells in a pluripotent state (OCT4, SOX2, and NANOG) and the other for promoting self-renewal and suppress cellular differentiation (CMYC, KLF4 and LIN28).

Based on this discovery, therapeutic approaches were developed by using autologous stem cells from patient-derived iPSCs without the ethical and graft rejection problems associated with using embryo-derived stem cells. Practically, the application of iPSCs to human regenerative medicine might require gene transfer to introduce RFs into somatic cells. Unfortunately, somatic cell reprogramming through gene transfer is relatively inefficient and is potentially mutagenic due to the genome integration of DNA-based expression vector. Other approaches that are not related toDNA-based expression vectors, such as, synthetic modified RNA and epigenetic regulation by chemical compounds are far from the practical application.

To overcome the limitation, we have newly invented improved cell-permeable RFsrecombinant proteins (iCP-RFs) fused to novel hydrophobic CPP, advanced macromoleculetransduction domain (aMTD), and solubilization domain (SD).

iCP-RFs induce stem cell-like colonies with high efficiency (0.01%~0.1%) and early colony formation with extension of self-renewal capacity and expression of stem cell-specific markers (OCT4, NANOG, TRA-1-60, TRA-1-81). Furthermore, by confirming that the stem cell-like colonies generated by iCP-RFs from stably differentiated teratoma of three germ layer, iCP-RFs have been shown to induce stem cells with complete pluripotent properties.

On the other hand, genome engineering is a technology for gene editing or repairingto recognize specific genetic sequence. This genome engineering technology is applicable tovarious fields, such as food, medical and research reagent. Especially, genome editingtechnology is used for therapeutic models to apply to therapy of genetic diseases.

The recent technology of CRISPR/Cas9 is powerful toolfor genome editing to repair disease-causing DNA mutations. However, a safe and efficient DNA delivery system are critical for guarantying the success of gene editing. Cell-permeable (CP) Cas9 with TSDT enables a simple treatment by gene editing with high cell-permeability. It is an innovative reagent that made it possible to be delivered into cells without DNA delivery. CP-Cas9 is increased in gene editing efficiency caused by intracellular transduction compared to previously used plasmid and mRNA system. These advantages of CP-Cas9 can be applied to gene modification as well as genetic research. CP-Cas9 also can be applied to stem cell therapy, which uses induced pluripotent stem cells (iPSC) for patients with genetic disorders.

Cas9 technology has been recently applied to disease-focused research through the production and characterization of patient-derived iPSCs from individuals with specific genetic diseases. The invention of induced iPSCs has greatly advanced translational research, especially with the generation of disease-derived human iPSCs. We believe CP-Cas9 will bring tremendous change forward in genetic transformation animal models, and even in stem cell research and therapy. Cellivery is open to out-licensing opportunities to institutions that want to begin research or development with CP-Cas9.

 

CV-14

PIPELINE | CV-14 

Ataxia is a neurodegenerative disease defined as an impaired voluntary coordination of muscle movement. Ataxia is mainly attributed to damages in the lesions of cerebellum, a part of the brain that is responsible for coordinating movement. Symptoms from the ataxia are serious and oftentimes cause weakness. Some types of ataxia related with genetic mutations can lead to an early death. Even though treatment for ataxia involves a combination of medication to reduce symptoms and to improve quality of life, these therapies have not shown substantial clinical improvement associated with neuronal loss.

CV-14 project is dealing with a special ataxia which is characterized by a monogenic autosomal recessive disease-causing a progressive neurogenerative disorder and cardiomyopathy, leading to an early death. CV-14 protein is known to play a key role in iron metabolism, particularly in iron-sulfur cluster (ISC) biogenesis and heme biosynthesis in mitochondria. A deficiency of CV-14 protein leads to an iron-sulfur cluster biosynthesis dysfunction, mitochondrial iron overload and oxidative stress in neurons and cardiac muscles. Protein replacement therapy that delivers proteins into cells across impermeable cell membrane has been proposed as an attractive strategy to deal with genetic diseases. For this reason, Therapeuticmolecule Systemic Delivery Technology (TSDT) applied cell-permeable CV-14 protein has been developed to be systemically delivered into damaged neurons and cardiomyocytes to protect from ataxia.

CV-14 project will be an effective therapeutic approach to strengthen neuronal function, which will greatly help patients who are suffering from ataxia.

 

CV-15

PIPELINE | CV-15
iCP-NI

Sepsis is one of the top 5 diseases leading death worldwide and widely recognized as a clinical syndrome, resulting from an overwhelming, systemic inflammatory response.

Sepsis is occurred by excessive secretion of pro-inflammatory cytokine called ‘cytokine storm’, caused by microbial infection, severe injuries or surgical stresses. The global incidence of sepsis is 30 million and its overall mortality is more than 20 %, meaning that there are 6 million of death caused by sepsis every year. Besides, sepsis treatment is not adequately controlled by current antimicrobial therapies and supportive measures, thereby requiring new adjunctive treatments.

Previously, a polypeptide suppressing various pro-inflammatory pathways caused byendotoxamia has been developed by synthesizing the 1’st generation hydrophobic cell-penetratingpeptide (CPP), termed membrane translocating sequence (MTS) derived from the signal peptideof fibroblast growth factor 4 (FGF4), along with NF-κB-derived nuclear localization sequence (NLS).

Cell-permeable nuclear import inhibitor (CP-NI) increased survival rate of severe acute inflammatory animals by suppressing expression of pro-inflammatory cytokines such as TNF-α, IL-6 and IFN-γ. However, CP-NI was hard to manufacture mainly due to its low solubility, resulting in low clinical applicability. To address this limitation, improved cell-permeable nuclear import inhibitor (iCP-NI) has been developed by adopting advanced macromolecule transduction domain (aMTD) and demonstrated its superior stability and activity in sepsis animal models. iCP-NI successfully inhibits the activation of pro-inflammatory pathways and suppress secretion of pro-inflammatory cytokines. In addition, iCP-NI showed dramatically increased survivability in acute severe sepsis mouse models by protecting organ failure. Efficacy study with additional clinical animal models and safety study are on process to prove the powerful therapeutic applicability of iCP-NI.

As a result, this enhanced therapeutics, iCP-NI, can be developed as a novel, unique measures for severe lethal inflammatory syndromes such as septic shock.

 

CV-16

PIPELINE | CV-16

Single-chain variable fragment (scFv) consists of the smallest functional antigen-binding domain of an antibody,in which variable heavy and variable light chains are joined together by a flexible peptide linker.

scFv retains the binding specificity of the parent antibody and offer several advantages over monoclonal antibodies.scFv displays improved pharmacokinetic properties, such as better tissue penetration, rapid blood clearance, and lowimmunogenicity which makes better therapeutic agents.

Although scFv has higher tissue penetration compared to antibodies, it still requires deliverytechnology for higher efficacy. Delivering scFv to targeting area is one of the main obstacles indeveloping scFv as a therapeutic candidate. To intracellularly localize scFv, many researchorganizations have tried variety delivery technologies such as nanoparticles, adeno-associatedvirus (AAV), and cell-penetrating peptides. Cellivery applied its technology TherapeuticmoleculeSystemic Delivery Technology (TSDT) to scFv and developed Cell-Permeable CV-16

Despite various advantages of scFv, it has obstacles to become a therapeutic agent due to the lack of a suitable means of delivery.CV-16 will provide efficient and effective delivery system to intracellularly localize scFv in targeted cells for its highest efficacy.CV-16 will expand applications of scFv which will ultimately help patients in need.

 

CV-17

PIPELINE | CV-17

Antisense oligonucleotides (ASOs) are short, single-stranded oligodeoxynucleotide that interact with complementarymessenger RNA (mRNA) to prevent translation of a targeted gene into protein.

Thus, synthesizing an antisense oligonucleotide with the complementary sequence can be a drug which represent to work by binding to RNA. ASOs can reduce, restore, or modify protein expression through several distinct mechanisms by designing any sequences of RNA, so it can apply to treat a vast array of diseases.

Intracellular delivery of ASOs is recognized as the major barrier to effective ASOactivity within the target cell.

Therefore, to improve poor cellular uptake process, Cellivery used its technology Therapeuticmolecule Systemic Delivery Technology (TSDT) to improve cell-/tissue-permeability of ASOs. CP-17 can represent a new and valid approach to regulate the expression of disease-related genes and will greatly helpful for patients who are suffering from varying diseases.

 

R&D

OVERVIEW

Research
&
Development

PROPRIETARY
TECHNOLOGY

The plasma membrane acts as an impermeable barrier, controlling the flow of proteins and other macromolecules in and out of cells.

However, Cellivery’s proprietary Therapeuticmolecule Systemic Delivery Technology (TSDT) allows functionally active macromolecules to rapidly transverse cellular membranes. The process utilizes specialized Cell-Penetrating Peptides (CPPs) that can be engineered into peptides, whole proteins, DNA fragments, and other bioactive substances, such as, drugs. With additional subcellular trafficking signals, transduced macromolecules can be guided to specific cellular locations, providing an effective way to influence intracellular protein function.

Indeed, TSDT platform has attracted vast interest and commentary by individuals outside of the Company for its potential use in a variety of applications. We anticipate that many activities throughout the biotechnology industry will involve licensing of Cellivery’s TSDT platform.

A series of papers published by Dr. Daewoong Jo and his colleagues have described a process, termed TSDT, to deliver biologically active proteins into mammalian cells and tissues. The technology provides a way to control biochemical processes in living cells quantitatively and under non-steady conditions. This sets the stage for the development of a new generation of protein-based therapeutics.

Since proteins function with specificity in the context of cellular biochemical pathways, protein-based therapies are expected to produce fewer side-effects than conventional small molecule-based drugs. TSDT exploits the ability of hydrophobic sequences termed macromolecule transduction domains (MTDs) to promote the uptake of peptides and proteins into mammalian cells. Consequently, MTD-fused recombinant proteins are said to be “cell-permeable (CP)”.

TSDT has proven to be superior to other protein transduction technologies. In particular, the use of HIV Tat and other basic sequences that promote unidirectional protein uptake via fluid-phase and adsorptive endocytosis. This sequesters most proteins in intracellular vesicles, which traps the protein cargo inside the cell, limiting cytoplasmic delivery, resulting in low bioavailability.

Finally, proteins modified with MTD sequences had significantly prolonged clearance times as compared to the identical proteins without an MTD sequence.

 

PUBLICATION

"Founder’s Publication as the Corresponding Author (2011 ~ )"

01020304050607080910

Choi YS and Jo D, et. al. (2018) Cell-permeable parkin suppresses Parkinson disease phenotypes by promoting mitophagy and α-Synuclein clearance, Under Review
Shin SM and Jo D, et. al. (2019) Intracellular delivery of SOCS3 suppresses cancer & inflammation by inhibiting JAK/STAT signaling, Manuscript Under Preparation
Chung EN and Jo D, et. al. (2019) Cell-permeable bone morphogenetic protein 2 (CP-BMP2) alone enhances osteogenesis without a bone scaffold, Manuscript Under Preparation
Lee SY and Jo D, et. al. (2019) Epigenetic regulation of gene structure and function with improved cell-permeable Cre recombinase (iCP-Cre) for site-specific recombination in genetically engineered animals, Manuscript UnderPreparatio
Duong T, Kim J, Ruley HE and Jo D (2014) Cell-permeable parkin proteins suppress parkinson disease- associated phenotypes in cultured cells and animals, PLoS ONE, 2014 Dec 17;9(12):e116242.
Lim J*, Kim J*, Kan g J and Jo D (2014) Partial somatic to stem cell transformations with cell- permeable reprogramming factors, Scientific Reports, 2014 Mar 12;4:4361-4371.
Lim J*, Duong T*, Lee G, Seong BL, El-Rifai W, Ruley HE and Jo D (2013) The effect of intracellular protein delivery on the anti-tumor activity of recombinant human endostatin, Biomaterials, 2013 Aug 1;34(26): 6261-71. Epub 2013 May 25.
Lim J, Duong T, Do N, Do P, Kim J, Kim H, El-Rifai W, Ruley HE and Jo D (2012) Antitumor activity of cell-permeable RUNX3 protein in gastric cancer cells, Clinical Cancer Research, 2013 Feb 1;19(3):680-690. Epub 2012 Dec 10.
Lim J, Kim J, Duong T, Lee G, Kim J, Yoon J, Kim J, Kim H, Ruley HE, El-Rifai W and Jo D (2012) Antitumor activity of cell- permeable p18INK4c with enhanced membrane and tissue penetration. Molecular Therapy, 2012 Aug;20(8):1540-1549. Epub 2012 May 22.
Lim J, Jang G, Kang S, Lee G, Nga DT, Phuong DT, Kim H, El-Rifai W, Ruley HE and Jo D (2011) Cell permeable NM23 blocks the maintenance and progression of established pulmonary metastasis. Cancer Research, 2011 Dec 1;71(23):7216-25. Epub 2011 Oct 10.

"Founder’s Publication as the First or Co-Author (2001 ~ )"

0102030405060708

Ock S, Ahn J, Lee SH, Kang H, Offermanns S, Ahn HY, Jo YS, Shong M, Cho BY, Jo D, Abel ED, Lee TJ, Park WJ, Lee IK, Kim J (2013) IGF-1 receptor deficiency in thyrocytes impairs thyroid hormone secretion and completely inhibits TSH-stimulated goiter, FASEB Journal, 2013 Dec;27(12):4899-4908. Epub 2013 Aug 27.
Jeon D, Kim S, Chetana M, Jo D, Ruley HE, Lin SY, Rabah D, Kinet JP, Shin HS (2010) Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC, Nature Neuroscience, 2010 Apr;13(4):482-8. Epub 2010 Feb 28.
Kee H, Eom G, Joung H, Shin S, Kim J, Cho Y, Choe N, Sim B, Jo D, Jeong M, Kim K, Seo J, Kook H (2008) Activation of histone deacetylase2 by inducible Hsp70 in cardiac hypertrophy. Circulation Research, 2008 Nov 21;103(11):1259-69. Epub 2008 Oct 10.
Lin Q, Jo D, Gebre-Amlak KD and Ruley HE (2004) Enhanced cell-permeant Cre protein for site-specific recombination in cultured cells. BMC Biotechnology, 2004 Oct 22;4(25):1-13
Jo D, Liu D, Yao S, Collins RD and Hawiger J (2005) Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis. Nature Medicine, 2005 Aug;11(8):892-8. Epub 2005 Jul 10.
Jo D, Leren T, Yang Z, Chung Y, Taylor JM and Paik YK (1995) Characterization of an upstream regulatory element of the human apolipoprotein E gene, and purification of its binding protein from the human placenta. Journal of Biochemistry, 1995 Apr;117(4):915-22.
Jo D, Lin Q, Nashabi A, May D, Unutmaz D, Pietenpol JA and Ruley HE (2003) Cell cycle-dependent transduction of cell-permeant Cre recombinase proteins. Journal of Cellular Biochemistry, 89(4):674-687
Jo D, Nashabi A, Doxsee D, Lin Q, Unutmaz D, Chen J and Ruley HE (2001) Epigenetic regulation of gene structure and function with a cell permeable Cre recombinase. Nature Biotechnology, 19(10):929-933

"Selected Publications of Dr. Ruley"

010203040506070809101112131415161718

Ruley HE, 1983, Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature, (5927)304: p. 602-6
Ruley HE and, Fried M, 1983, Clustered illegitimate recombination events in mammalian cells involving very short sequence homologies. Nature, (5922)304: p. 181-4
Cook JL and Ruley HE, et al., 1986, Expression of the adenovirus E1A oncogene during cell transformation is sufficient to induce susceptibility to lysis by host inflammatory cells. Proc Natl Acad Sci U S A, (18)83: p. 6965-9
Franza BR, Jr. and Ruley HE, et al., 1986, In vitro establishment is not a sufficient prerequisite for transformation by activated ras oncogenes. Cell, (3)44: p. 409-18
Hirakawa T and Ruley HE, et al., 1988, Rescue of cells from ras oncogene-induced growth arrest by a second, complementing, oncogene. Proc Natl Acad Sci U S A, (5)85: p. 1519-23
Von Melchner H and Ruley HE, et al., 1990, Isolation of cellular promoters by using a retrovirus promoter trap. Proc Natl Acad Sci U S A, (10)87: p. 3733-7
Reddy S and Ruley HE, et al., 1992, Fluorescence-activated sorting of totipotent embryonic stem cells expressing developmentally regulated lacZ fusion genes. Proc Natl Acad Sci U S A, (15)89: p. 6721-5
Von Melchner H and Ruley HE, et al., 1992, Selective disruption of genes expressed in totipotent embryonal stem cells. Genes Dev, (6)6: p. 919-27
Lowe SW and Ruley HE, et al., 1993, Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev, (4)7: p. 535-45
DeGregori J and Ruley HE, et al., 1994, A murine homolog of the yeast RNA1 gene is required for postimplantation development. Genes Dev, (3)8: p. 265-76
Lowe SW and Ruley HE, et al., 1994, Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Natl Acad Sci U S A, (6)91: p. 2026-30
Martin WD Ruley HE, et al., 1996, H2-M mutant mice are defective in the peptide loading of class II molecules, antigen presentation, and T cell repertoire selection. Cell, (4)84: p. 543-50
Hicks GG and Ruley HE, et al., 1997, Functional genomics in mice by tagged sequence mutagenesis. Nat Genet, (4)16: p. 338-44
Hicks GG and Ruley HE, et al., 2000, Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nat Genet, (2)24: p. 175-9
Jo D and Ruley HE, et al., 2001, Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat Biotechnol, (10)19: p. 929-33
Osipovich AB and Ruley HE, et al., 2005, Post-entrapment genome engineering: first exon size does not affect the expression of fusion transcripts generated by gene entrapment. Genome Res, (3)15: p. 428-35
Donahue SL and Ruley HE, et al., 2006, Carcinogens induce genome-wide loss of heterozygosity in normal stem cells without persistent chromosomal instability. Proc Natl Acad Sci U S A, (31)103: p. 11642-6

Osipovich AB and Ruley HE, et al., ., 2008, Dyggve-Melchior-Clausen syndrome: chondrodysplasia resulting from defects in intracellular vesicle traffic. Proc Natl Acad Sci U S A, (42)105: p. 16171-6

 

INTELLECTUAL PROPRIETARY

"Cellivery is Patentee"

#TargetIndication and UseApplication NumberDateRegistration Number/Date

01 aMTDs aMTD/TSDT Platform
[PCT/KR2015/008544]
CN (201580044116.8) 17.02.16
JP (2017-510405) 17.02.15 6559227 (19.08.14)
US (15/503117) 17.02.10 10323063 (19.06.18)
CA (2957501) 17.02.07
KR (10-2017-7005079) 17.02.22 101971021 (19.04.23)
EP (15833496.1) 17.02.13
AU (2015304194) 17.01.12 2015304194 (18.03.01)
02 iCP-SOCS3
Pancreatic Cancer Therapy
[PCT/KR2016/009416]
EP (16839623.2) 18.03.13
US (15/408123) 17.01.17
Solid Tumor Therapy
[PCT/KR2016/009414]
EP (16839621.6) 18.03.15
US (15/361701) 16.11.28
Anti-Angiogenesis Therapy
[PCT/KR2016/009456]
EP (16839637.2) 18.03.16
US (15/631982) 17.06.23
Hepatocellular Carcinoma Therapy
[PCT/KR2016/009446]
US (15/432662) 17.02.14 10385103 (19.08.20)
Lung Cancer Therapy
[PCT/KR2016/009441]
US (15/408230) 17.01.17
03 iCP-Parkin Parkinson's Disease Therapy
[PCT/KR2016/008174]
CN (201680044600.5) 18.04.03
JP (2018-503759) 18.01.25
US (15/879664) 18.01.25
CA (2993778) 18.01.25
KR (10-2018-7005889) 18.02.27
EP (16830820.3) 18.02.27 등록완료/등록번호 미정
AU (2016299468) 18.01.17 2016299468(19.07.25)
IN (201827002920) 18.01.24
04 CP-BMP2 Bone Healing Therapy
[PCT/KR2016/009405]
EP (16839619.0) 18.03.12
US (15/884884) 18.01.31 등록완료/등록번호 미정
05 CP-△SOCS3 Obesity Therapy
[PCT/KR2016/008831]
EP (16837265.4) 18.03.07
US (15/888459) 18.02.05 10323072 (19.06.18)
06 iCP-Cre Genome Engineering Enzyme
[PCT/KR2016/008760]
EP (16835419.9) 18.03.02
US (15/887414) 18.02.02
07 iCP-RFs iPSC Reprogramming Factors
[PCT/KR2016/008757]
EP (16835416.5) 18.03.02 등록완료/등록번호 미정
US (15/884651) 18.01.31 등록완료/등록번호 미정
08 CP-Cas9 Genome Editing Enzyme
[PCT/KR2017/010747]
EP (17856752.5) 19.03.14
US (16/337250) 19.03.27

 

 

 

반응형
반응형

289080, BTS, immuneMed, SV INVESTMENT, SV인베스트먼트, 방탄소년단, 빅히트, 빅히트엔터테인먼트, 에스브이인베스트먼트, 이뮨메드

(289080) SV인베스트먼트 - (1)

 

이뮨메드의 홈페이지 

ImmuneMed INC

 

 

SV인베스트먼트의 투자처중 하나인 이뮨메드

이뮨메드

바이러스억제물질(VSF),급성열성질환 치료제,진단키트,백신 제조,개발,도매 등 생물학적 제제 제조업체

 

 

SV인버스트먼트 기업분석

주재무제표

 

 

 

  • 중소기업창업투자회사로서 중소기업창업투자조합 등 조합 결성을 통한 창업자 및 중소벤처기업 투자를 주력 사업으로 영위하고 있는 벤처캐피탈(VC) 기업임.
  • 2006년 4월 설립된 이래 VC투자조합 및 경영참여형 사모집합투자기구(PEF)등으로 약 7,299억원(해외 2,010억원, 국내 5,289억원)의 재원을 누적 결성함.
  • 바이오/헬스케어, 문화콘텐츠, Secondary등 다양한 분야에서 벤처캐피탈로서의 경쟁력을 인정 받음.

 

SV인베스트먼트 매출액 / 영업이익

SV인베스트먼트 당기순이익 / 자본금

SV인베스트먼트 주주정보

 

SV인베스트먼트 공시정보 및 보고서

 

다년간의 IPO,M&A,IR 등 관계회사인 에스브이파트너스의 기업금융 컨설팅 및 네트워크를 기반으로 2006년 4월 5일 중소기업창업지원법에 의해 설립된 벤처캐피탈 회사 입니다. 당사는 기업의 성공을 위한 종합컨설팅을 지원한다는 투자철학을 바탕으로 Global 투자회사로 거듭나고자 노력하고 있습니다.

 

SV인베스트먼트의 투자처

선호기술 - 제조, 연구개발, 전자상거래, 리얼타임 커뮤니케이션, 빅데이터 / 분석

선호 대분야 - 바이오 / 의료, 전자제품, 유아, 뷰티, 자동차

선호 소분야 - 통신, 반도체, 약품 / 약물, 진단, 연예인

선호 투자단계와 선호업력은 초기단계와 중장기로 고루 분포되어있으며,

다양한 업종과 종목에 분산투자를 지향하고있다.

SV인베스트먼트와 더불어 공동투자자가 여러군데가 있다.

한국산업은행

메가인베스트먼트

유티씨인베스트먼트

티비씨

케이비인베스트먼트

케이티비네트워크

키움인베스트먼트

아이엠엠인베스트먼트

투자조합 (Fund)

금융, 기업투자 분야에서 펀드 형태로 Offline, 투자합니다.

 

SV인베스트먼트의 투자처의 운용중인 펀드는 총 12개이다.

 

 

SV인베스트먼트 현재주가

참고로

국내 벤처캐피털(VC) SV인베스트먼트는 2011년 당시 무명의 빅히트 엔터테인먼트에 과감하게 30억원을 투자했다. 이듬해인 2012년에 10억원을 더 집어넣어 총 40억원을 베팅했다. 빅히트 엔터테인먼트는 초기 투자자금을 바탕으로 방탄소년단(BTS)을 글로벌 아이돌 그룹으로 성공시켰다. SV인베스트먼트의 초기 투자 없이는 오늘날의 BTS도 불가능했다는 게 업계의 평가다. SV인베스트먼트는 이 투자로 원금 대비 27.5배에 달하는 수익을 거뒀다. 수익률을 계산하면 2650%에 이른다.
박성호 대표가 이끄는 SV인베스트먼트는 ‘액티브 투자’를 즐겨 한다. 될성부른 기업을 찍어 ‘실탄’을 집중한다는 얘기다. 기업의 성장 속도에 발맞춰 추가로 자금을 집어넣는 것도 SV인베스트먼트만의 투자 스타일로 꼽힌다.
펩트론, 브릿지바이오, 엘앤피코스메틱(메디힐), 휴젤 등이 대표 포트폴리오다. 엠플러스, 에스디생명공학, 카페24 등도 SV인베스트먼트의 투자를 받고 성장했다. 현재까지 191개 기업에 6219억원을 투자했다. 누적 수익률은 22.5%, 누적운용자산(AUM)은 5614억원이다. 2006년에 설립된 VC로 투자 업력이 13년뿐이라는 점을 감안하면 놀라운 성장 속도다. 국내 VC 전체로 따져도 10위권에 들어간다.

이런 성과를 바탕으로 지난해에는 코스닥시장에 상장했다. 사모펀드(PEF) 분야로도 사업 영역을 넓혔다. 해외 시장 진출에도 적극적이다. 미국과 중국에 해외 사무소를 세우고 역외펀드를 설립했다. 미·중 두 나라에 역외펀드를 만든 국내 VC는 SV인베스트먼트가 유일하다.

회사 관계자는 “전도유망한 기업을 초기에 발굴하는 것이 중요하다”며 “어려움이 닥치더라도 창업자를 믿고 기다리는 것을 원칙으로 삼고 있다”고 말했다. 그는 “국내 시장에선 이미 자리를 잡았다”며 “앞으론 글로벌 시장을 개척하는 데 공을 들이겠다”고 덧붙였다.

더불어

인기 그룹 방탄소년단(BTS)의 소속사인 빅히트엔터테인먼트가 기업공개(IPO)에 시동을 걸면서 임직원과 투자자들이 대박의 꿈에 부풀었다.

3일 빅히트에 따르면 이 회사 임직원들에게 부여된 스톡옵션(주식매수선택권·2018년 말 기준) 수량은 3만1000주다. 주당 행사가격은 1만7000원이다. 지난해 초부터 2023년 말까지 빅히트 주식으로 바꿀 수 있다. 해당 스톡옵션을 보유한 임직원 및 소속 아티스트가 누구인지는 밝혀지지 않았다.

증권가에서는 빅히트가 상장 때 평가받는 기업가치에 따라 스톡옵션 가치가 크게 뛸 것으로 예상하고 있다. 2018년 넷마블이 빅히트의 기업가치를 8000억원으로 보고 투자했을 당시 주당 가격을 45만1758원으로 책정했다. 이를 기준으로 해도 스톡옵션을 행사하면 주당 43만원 이상, 전체로는 약 135억원의 이익을 얻는다.

현재 빅히트의 예상 기업가치로 최소 3조원이 거론되고 있고, BTS의 가치를 감안할 때 기업가치가 더 치솟을 가능성도 있다는 관측이 나온다. 보수적으로 평가해도 현재 스톡옵션 가치는 주당 100만원 중후반대라는 분석이다. 한 증권업계 관계자는 “빅히트가 상장하기 전 추가로 임직원 및 소속 연예인들에게 스톡옵션을 줄 가능성이 있다”며 “우리사주조합까지 결성한다면 임직원들은 상당한 시세차익을 기대할 수 있는 상황”이라고 말했다.

빅히트에 투자한 기관투자가들도 함박웃음을 짓고 있다. 넷마블은 2018년 4월 보통주와 우선주를 합쳐 빅히트 주식 44만5882주를 약 2014억원에 취득, 이 회사 2대 주주(2018년 말 기준 지분율 25.22%)가 됐다. 당시 인정받은 빅히트 기업가치가 8000억원 수준이었다는 점을 감안하면, 상장 때 책정되는 기업가치에 따라 최소 수천억원대 평가차익을 기대할 수 있게 됐다. 2018년 10월 1040억원을 투자한 스틱인베스트먼트는 스틱스페셜시츄에이션사모투자 합자회사를 통해 보통주 21만6430주(12.24%)를 보유하고 있다. 방시혁 빅히트 대표와 넷마블에 이은 이 회사 3대 주주다. 스틱인베스트먼트는 투자 당시 기업가치를 약 8700억원으로 평가했다.

넷마블과 스틱인베스트먼트 이전에 투자를 단행한 기관들은 더 높은 투자수익률을 올렸다. 2016년에는 국내 벤처캐피털(VC)인 LB인베스트먼트와 중국의 레전드캐피털이 함께 빅히트에 100억원을 투자했다. LB인베스트먼트는 2012년에도 빅히트에 투자한 데 이어 보유 주식 일부를 매각했다.

빅히트 기업공개(IPO) 주관사 후보 중 하나인 한국투자증권도 2017년 투자했다. 빅히트의 초기 투자자로 40억원을 투입했던 SV인베스트먼트는 2018년 보유 지분을 팔아 1000억원 이상을 회수했다.

 

반응형
반응형

(059090) 미코 - (1) 회사소개

059090, 고주파 전력 증폭장치, 미코, 미코 바이오메드, 반도체용 부품, 세정사업, 정전척, 진단시약, 코로나19, 코미코

  • 동사는 1999년 7월 16일에 설립되었으며, 2002년 1월 15일자로 코스닥시장에 상장하였음.
  • 동사는 종속회사 8개사를 포함하여 주요 사업으로 반도체 및 엘씨디 장비를 구성하는 부품을 제작하는 부품사업부문과 반도체 및 엘씨디 장비를 구성하는 부품의 세정과 코팅을 영위하는 세정사업부문이 있음.
  • 동사의 매출은 세정사업 약 73%, 부품사업 약 27%로 구성되어 있음.

 

안녕하십니까? 미코 그룹 회장 전선규 입니다.
미코 그룹은 반도체, 디스플레이 공정 장비용 세라믹 소재, 부품 전문기업인 미코와 반도체 공정 장비용 부품 세정, 코팅 전문기업인 코미코,
콜레스테롤 측정기와 같은 POCT(Point Of Care Testing) 전문기업 미코바이오메드 등으로 구성되어 있습니다.

미코는 고기능성 제품인 Heater, ESC, 하부전극 등의 제품과 일반 세라믹 부품들에 있어 기술, 생산 Capa 확보 등을 통해 글로벌 경쟁력을 확보하여
글로벌 세라믹 소재 전문기업으로 발돋움하고 있습니다.

코미코는 세정, 코팅 사업의 선두주자로서 그 위치를 확고히 유지하고 있으며 글로벌 반도체 경기 활성화에 따른 성장을 기대하고있습니다.

미코바이오메드는 안정적인 글로벌 거래처 확보 등을 통해 글로벌 바이오 헬스케어 전문기업으로의 입지를 다지고 있습니다.

미코는 전 직원들이 ‘즐겁게 / 치열하게 / 깨끗하게 / 빠르게’ 라는 기업 정신을 바탕으로 지금 이 순간에도 고객만족을 위해 불철주야
노력하고 있습니다. 앞으로도 많은 관심과 격려 부탁 드립니다.

 

미코 네트워크

 

미코 (주)코미코

 

미코 (주)미코 바이오메드

 

미코 조직도

미코 사업분야

Heater

AIN Heater

300mm AIN Heater

200mm AIN Heater

Feature (1 Zone)

  • 200mm / 300mm wafer
  • 열전도도 우수 (170W/m·K)
  • 내구성 우수
  • 부식 저항성 우수
  • 다양한 CVD공정 내 Wafer 온도 균일도 우수

Feature (2 Zone)

  • One Zone Heater보다 Wafer온도 균일도 우수
  • 300mm Wafer 공정 내 개별 Zone제어하여 온도 균일도 최적화

 

 

      AIN Heater Repair

Schematic for AIN Heater

 

 

반도체 공정용 정전척

  • 척(Chuck) 모드 : 쿨롱, 존슨-라벡
  • 전극 타입 : 단극형, 양극형
  • 적용 분야 : 건식 식각(Oxide, Poly, Metal),
    증착공정, ODF, Flip Chip
  • 적용 웨이퍼 크기 : 최대 Φ350㎜
  • 히터 발열영역 : 단일 영역, 이중 영역, 다중 영역
  • 제어 가능한 온도 범위 : 0 ~ 150℃
    (튜너블 정전척 : 온도 조절 가능한 타입)

 

디스플레이(LCD / OLED) 공정용 정전척

  • 전극 타입 : 단극형, 양극형
  • 유리 기판 크기 : 최대 10.5세대
  • 정전척 크기 : 최대 3500×3300㎜

 

 

 

 

반도체 / MEMS 공정용 샤워헤드

  • 가스 분배 채널 : 단일 영역, 이중 영역, 다중 영역
  • 절연 소재 아노다이징, 세라믹 플라즈마 코팅 (Al2O3, Y2O3)세라믹 소결체 (SiC, Y2O3, Al2O3)
  • 적용분야 : 건식 식각 (Oxide / Poly), 증착공정
  • 적용 웨이퍼 크기 : ~ 300㎜(φ)
  • 히터 발열영역 : 단일영역, 이중영역, 다중 영역
  • 제어 가능한 온도 범위 : 0 ~ 150℃(온도조절 가능한 타입)

 

AlN Ceramic

  • 높은 열전도도 특성
  • 파티클 발생 감소
  • 플라즈마에 대한 낮은 식각률
  • 긴 사용 시간

 

  • 높은 열전도도 특성
  • 큰 사이즈 튜브 (외경 Φ274 x T150, 외경 Φ240 x T300)

 

  • 높은 열전도도 특성
  • 소형 절연판 사이즈 (Φ32 x T2.5)
  • 높은 생산성 ( 6000 개 / 1 Run)

 

Machinable AlN Ceramic

  • 우수한 기계 가공성
  • 높은 열전도도 특성
  • 높은 절연 저항
  • 복잡한 형상의 세라믹 가공 (스크류, 핀과 도가니 타입)
  • 큰 사이즈 제품 생산 (□305 x T64)

 

Y2O3 Ceramic

  • 높은 플라즈마 저항성
  • Particle issue 감소에 따른 긴 Life Time
  • 저 유전 손실
  • 고강도 Yttrium Powder 개발/소재 양산
  • 대구경 소재 제작 기술 보유

 

Al2O3 Ceramic

 

Material Characteristics

  • 화학적 침식, 유기 용제에 강한 내약품성
  • 우수한 기계적 강도 및 내마모성
  • 강유전성, 저 유전손실 및 고온 전기 절연성
  • 1600℃ 이상 사용 가능한 우수한 내열성
  • 다양한 응용이 가능한 범용성

 

연구분야

AIN Ceramic

 

    AlN의 일반적인 특성
  • 내열성 및 내식성 우수
  • 공유결합과 이온결합
  • 소결이 비교적 용이 (다른 산화물에 비해 이온결합 특성이 크다)
  • 절연성 및 높은 열전도율
  • 온도상승에 따른 열전도율 감소가 낮다 (산화물에 비해서)
  • 단결정은 무색투명
  • 낮은 열팽창계수 (알루미나에 비해)
    AlN의 주요 용도
  • 반도체용 부품, 고전류용 스위치, 고주파 전력 증폭장치, 비산화 분위기용 내화골재, 금속용융용 도가니, 보호관, 소결용 치구

 

 

 

    장점
  • 우수한 내 플라즈마성 및 내식성
  • 우수한 파티클 저감 성능
  • 높은 라이프 타임
    응용분야
  • Heater Tube
  • Shadow-rings to guide wafer
  • Cover-plates at in-situ process (>Φ400mm)
  • Gas injectors and nozzles
  • Lift-pins and screws

 

AlN 세라믹의 공정도

 

AlN 세라믹의 제작 가능한 크기

 

 

AlN 

    Features of AlN Ceramic Substrate
  • 높은 열전도도 특성 ( AlN : 170W/m·k vs. Al2O3 : 15W/m·k )
  • Al2O3 기판과 유사한 기계적 물성
  • 큰 사이즈의 기판 제조 가능
  • High power LED’s, power device, hybrid modules, etc 등의 제작에 적합한 AlN 기판

 

Al2O3 와 AlN Substrate의 비교

 

AlN Substrate의 제조 공정도

 

SOFC(Solid Oxide Fuel Cell)

 

반응형
반응형

(065620) 제낙스 - (1)

#065620#제낙스#jenaxinc#IT 부품소재산업#케이블#2차 전지#스테인레스 와이어#차세대 배터리#Spun Yarn#폴리머

 

MISSION

친환경적이며 파워풀한 에너지를 창조하고 제공하여 최고의 글로벌 회사로 인정받는 제낙스

VISION

차세대 기술로 삶의 질을 높여 지속 가능한 지구를 만들고,하나님의 이름을 높이는 회사로 자리 잡아 사회에 공헌하는 제낙스

GOALS

  • 환경 친화적인 에너지를 만들어 내는 기업
  • 새로운 기술로 업그레이드된 라이프스타일과 문화를 소개하는 기업
  • 기독교 가치에 기초하여 더 윤리적이고 더 건실한 기업
  • 전 세계에 하나님의 사랑을 전파하는 기업

 

 

제낙스

  • 동사는 1991년 6월 18일 설립되었으며, 2002년 6월 27일 코스닥시장에 주식을 상장함.
  • 동사는 스테인레스 와이어 등을 생산 판매하는 기업이며 1개의 중국현지법인 계열회사를 가지고 있음.
  • 스테인레스 관련산업은 세계적인 추세인 경량화에 맞추어 고강도화를 위한 가공분야의 조직 미세화, 열처리 및 신선 가공기술 발전이 기대되며 전자, 기계부품용 특수기능제품 개발이 전망되어 지속적인 성장이 유지가 예상됨.

 

Flexible Lithium Polymer Battery

J.Flex는 딱딱한 직사각형 형태의 기존 리튬이온 배터리를 뛰어넘어, 휘거나 구부릴 수 있을 뿐만 아니라 빠르게 충전되며 다양한 모양으로도 구현 가능한 차세대 배터리입니다. 디바이스의 디자인에 따라 맞춤형 주문 제작 및 웨어러블 제품에 적용 가능합니다.

 

[JENAX] J.FLEX SAFETY TEST

https://youtu.be/IjyB7o26v5o

 

[JENAX]J.Flex Safety Test (Salt Water Immersion)

https://youtu.be/aWr-tSU28LQ

 

 

Applications

J.Flex의 활용 범위는 다양합니다. 현재, 시장에서 접할 수 있는 웨어러블 기기부터 아직 개발되지 않은 미래 디바이스까지, J.Flex는 디자인의 한계를 뛰어넘을 수 있는 차세대 배터리입니다.

 

 

 

젤 폴리머 전해질

리튬 이온의 빠른 움직임

과열 방지

높은 에너지 밀도

낮은 내부저항

지속적인 벤딩에도 안정성 유지

 

Benefits

 

1. FLEXIBILITY

구부리고, 말고, 접을 수 있는 J.Flex의 특징 덕분에 차세대 디바이스의 유연성이 획기적으로 향상됩니다. 이를 통해 사람들의 생활과 문화를 아우르는 IT, 헬스케어, 패션 등 다양한 산업 분야에서 사용자의 높은 편의성을 제공합니다.

아래 테스트는 두 가지 상태에서 배터리의 충방전 성능을 보여주고 있습니다.

a) 배터리를 구부리지 않았을 때(Non-bending)

b) 배터리를 지속하여 구부렸다 폈다를 반복(Dynamic bending)-곡률반경 20mm까지 10,000회 반복

 

 

 

2. DESIGN

디바이스의 독창적인 디자인을 실현하기 위해서는 에너지를 저장할 수 있는 2차 전지에 관한 기술 향상이 매우 중요합니다. J.Flex는 주문제작이 가능한 배터리로서, 디바이스 디자이너가 원하는 다양한 사이즈와 형태로 제작이 가능합니다. 따라서 기존의 한정된 사이즈 및 형태에 따른 디자인의 한계를 뛰어넘어 보다 창의적인 디자인 디바이스 제작을 가능케 합니다.

 

Stainless Steel Cloth

 

 Spun Yarn

 

 Blended Yarn

 

 Filament Yarn

 

Yarn Applications

 

초극세선

극세선

세선

전선용 케이블

 

연구개발 (Research and Development

연구개발은 제낙스의 주춧돌 사업입니다. 현대인의 더 좋은 라이프 스타일을 개발하기 위해 지속해서 대학교 산하 연구소 및 전문가들과의 네트워크를 확장하고 있습니다. 앞으로 제낙스는 배터리 분야 외 다양한 에너지 부문에 대한 기술 및 제품 연구를 강화하고, 이를 통해 다져진 우리의 핵심 기술을 활용하여 더 나은 생활을 위한 기술 특허를 계속해서 확보해 나갈 것입니다.

 

기업설명(IR)

제낙스는 금속, 화학 및 섬유의 융합으로 창조된 신소재에 대한 기술과 노하우를 축적한 회사입니다. IT 부품소재산업에서의 독보적인 기술
확보와 신제품 개발에 목표를 두고 연구개발 및 제품 생산을 하고 있습니다. 미래의 성장산업인 친환경 에너지산업으로 거듭나고 새로운
기능이 부여된 융합제품 개발에 전심전력을 다 할 것입니다. 우리의 기술은 현재 IT기반의 라이프 스타일을 변화와 혁신으로 주도해 나갈 것입니다.
고객, 주주 여러분의 기대에 부응하는 회사가 되기 위해 최선을 다하겠습니다.

 

 

제낙스 현주가

 

제낙스 최근 분기 실적

 

제낙스 뉴스

반응형

'*기업 & 종목 소개 > - KOSDAQ 코스닥' 카테고리의 다른 글

(289080) SV인베스트먼트 - (1)  (0) 2020.02.28
(059090) 미코 - (1) 회사소개  (0) 2020.02.27
(009730) 코센 - (1) 회사소개  (0) 2020.02.27
(041960) 코미팜 - (2)  (0) 2020.02.27
(041960) 코미팜 - (1)  (0) 2020.02.27
반응형

(009730) 코센 - (1) 회사소개

  • 동사는 1974년 3월 25일 설립되어 1990년 7월 27일 상장됨.
  • 동사는 철강제품 제조 판매사업 등을 영위하고 있으며, 종속회사를 통해 의료기기 사업에 진출하고 있음.
  • 동사가 영위하고 있는 스테인리스 강관사업은 산업전반적인 분야의 경기 변동과 밀접한 관계가 있으며, 특히 건설, 조선, 플랜트 산업의 경기와 밀접한 연관을 맺고 있음. 계절적인 편차 역시 존재함.

 

반응형

'*기업 & 종목 소개 > - KOSDAQ 코스닥' 카테고리의 다른 글

(059090) 미코 - (1) 회사소개  (0) 2020.02.27
(065620) 제낙스 - (1)  (0) 2020.02.27
(041960) 코미팜 - (2)  (0) 2020.02.27
(041960) 코미팜 - (1)  (0) 2020.02.27
(305090) 마이크로디지탈 - (1)  (0) 2020.02.26

+ Recent posts